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ABSTRACT1 

Standing surface acoustic waves (SSAW) have been widely used for sorting of cells and 

particles. However, the major challenges faced with the acoustic driven separation process is the 

need for an optimized setup to achieve effective separation and the range of particles that can be 

separated. In this thesis, a custom simulation model is studied to investigate and optimize the 

separation of varying size particles in a sheathless acoustic separation platform that was developed 

in our research lab. Specifically, the effect of flowrate, pressure amplitude, wavelength and 

interdigitated transducers (IDTs) physical parameters on the separation efficiency is explored. We 

also explored the critical particle size for acoustic particle separation with 3 µm particles and 

demonstrated, successful 3 µm and 6 µm particles for the first time for this sheathless separation 

platform. The ANSYS® FLUENT was utilized to numerically simulate acoustic radiation force 

(ARF) on the particles for separation. With the increase in the pressure amplitude in the first and 

second stage to 80 kPa and 110 kPa respectively, the optimization studies presented have shown 

to improve the separation efficiency of the model over 96 % for both 10 & 3 μm particles. Findings 

of the current study will aid in increasing the efficiency of particle separation and in designing the 

SSAW driven microfluidic devices.

                                                 
1 Portions of this thesis have been previously published in the Microsystem Technologies, 2018. 

Permission from Springer Nature to reproduce is included in Appendix C. 
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CHAPTER 1: INTRODUCTION  

Isolating specific cells is a crucial step in many techniques used in the area of biology and 

related disciplines. In biomedical applications, effective cell sorting is required for understanding 

the cells function and their response to stimuli [1]. Use of sorted cells reduces the heterogeneity of 

the study sample and decreases the variations among the experiments. Some of the representative 

examples in biomedicine where separation techniques employed are: sorting out malaria infected 

cells for diagnostics, isolation of platelets and separation of circulating tumor cells from the blood 

[1-4].  

Numerous sorting techniques have been developed based upon the physical properties of 

the cell such as size, density, electrical or magnetic affinity etc. [1, 3]. Standard separation methods 

such as filtration, centrifugation and sedimentation can be used for the separation of cells [1]. In 

cases where the cell size or density difference are not significant, the efficiency of the cell 

separation is lower. In such cases, acoustic based cell separation techniques may be employed to 

acquire higher cell sorting efficiency. 

In acoustic based cell separation technique, microfluidic separation is accomplished by 

applying differential forces on cells to guide them into various paths. This is the only active 

separation method that can distinguish cells based on their density, compressibility and size [5]. 

As this method requires the application of external acoustic forces the efficiency of the device can 

be controlled to accommodate the sorting of cell samples with distinct physical properties [6]. 

Compared to other standard cell sorting techniques, acoustic-based manipulations have been 

recognized as more biocompatible [7]. Acoustic based approaches thus offer excellent alternatives  
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for cell separation and have potential to aid in cancer research, therapeutics and drug efficacy 

assessment [5]. Further acoustic particle separation techniques find use in many industrial 

applications for the separation of solid particles present in air [8]. 

In this work, we present an advanced simulation study of cell sorting technique that is based 

on a tunable standing surface acoustic waves (SSAW). In SSAW-based cell separation, cells 

experience acoustic radiation force (ARF) directly instead of using the acoustic streaming effect 

which manipulate the fluids in the microchannel [9]. This process can define and modify the 

position of pressure nodes (PNs) and consequently guide the cells into different paths (and into the 

designated outlets). This method can accomplish more controlled and stable cell separation when 

compared to acoustic-streaming-based methods which is often unpredictable [9]. In addition, this 

method can produce a large translation and it is capable of separating cells into a great number of 

outlet channel (e.g. four) in a single step [9]. This provides a significant advantage over many 

existing cell-separation methods, which typically separate the cells into two outlets. However, for 

efficient separation, positioning of the PNs/ANs (pressure anti nodes) is required depending upon 

the design of the microchannel. This can be achieved through the generation of tunable SSAW 

using interdigital transducers (IDTs). Hence, by tuning the frequency of SSAW, we can adjust the 

position of PNs/ANs in the lateral direction normal to the cell flow, which in turn drives the cells 

to their designated outlets [9]. 

1.1 Motivation  

The motivation behind this study is the need for development of a model that can simulate 

particles of various physical properties in the presence of SSAW and explore for the ways to 

increase separation efficiency.  
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Simulation is a powerful tool that can be utilized to mimic the behavior of a phenomenon 

for analyzing and solving related potential problems. Despite the complications involved in the 

development of the model, simulations are preferred over the real-world experiments as it gives 

insights into the behaviors of a system without actually building it. In addition, simulations are 

less time consuming and can be used for the verification of analytical solutions. This makes 

simulation a plausible alternate to the real-world experiments. 

In this study, we developed a simulation model that demonstrates particle separation by 

ARF and has the ability to simulate the particles of different physical properties. We also 

performed systematic parametric studies of the factors influencing the separation efficiency of the 

model and explore the merits of utilizing alternate designs to optimize the separation efficiency. 

Although this study concentrates on the separation of polystyrene particle, it can also be extended 

for particles of any type.  

1.2 Thesis Organization 

This thesis is organized in the following manner  

1 Chapter 2: This section will discuss the theoretical background on acoustic radiation force on 

compressible sphere. This chapter will also discuss the previous work that has been done in 

standing surface acoustic wave (SSAW) based separation. 

2 Chapter 3: This section will give the specifics of the design selected for the study. It will also 

cover other important aspects such as meshing, and background conditions considered for the 

simulation.  

3 Chapter 4: This chapter will concentrate on the separation efficiency of the model and will 

discuss the ways to optimize it.  
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4 Chapter 5: This section will present the conclusions drawn from the investigations and the 

potential future works that it can be reached out to. 
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CHAPTER 2: ACOUSTIC RADIATION FORCE2 

This section will discuss the theoretical background on acoustic radiation force on 

compressible sphere. This chapter will also discuss the previous work that has been done in 

standing surface acoustic wave (SSAW) based separation. 

The radiation force experienced by an object in the presence of acoustic field is known as 

acoustic radiation force (ARF) [10]. Acoustic radiation force can be used to manipulate the particle 

trajectories by moving them towards the nodal (or anti-nodal) positions in an acoustic field 

depending upon their material properties. Utilizing this principle, various acoustic based separators 

have been investigated for biomedical and chemical analysis. For generating acoustic standing 

wave field, either bulk acoustic waves (BAWs) or surface acoustic waves (SAWs) can be used in 

microfluidic devices [11]. In this study we adopt a method of using SSAW for continuous particle 

separation in a microfluidic channel. Using this method, particles present in the fluid medium can 

be separated based on their compressibility, density and volume [12]. 

2.1 Theory 

The investigation of acoustic radiation force on suspended particles has a long history. The 

analysis of acoustic radiation force on incompressible spheres was done by King in 1934 [13], 

while the forces on compressible spheres were calculated by Yosioka and Kawasima in 1955 [14]. 

ARF (Fr) induced on a particle present in an acoustic standing wave field in a compressible 

medium is given by [14] 

                                                 
2 Portions of this chapter have been previously published in The Sensors (Basel). 2012. Permission 

is included in Appendix C. 
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() Fr = −
(𝜋𝑝𝑜

2𝑉𝛽𝑚)

2𝜆
𝜑(𝛽, ρ) sin(2𝑘𝑥)  (1) 

() 𝜑(𝛽, ρ) =  
(5𝜌𝑝 −  2𝜌𝑚)

(2𝜌𝑝 + 𝜌𝑚)
−

𝛽𝑝

𝛽𝑚
 (2) 

where β, λ, ρ, V are the particle’s compressibility, wavelength, density, volume while k, x, po, φ are 

the wavenumber, distance from the pressure node, acoustic pressure amplitude and acoustic 

contrast factor respectively. The subscript of m and p represent the liquid medium and particle 

respectively. 

From equation 1, it can be observed that the ARF changes sinusoidally with an interval of 

a half wavelength in space. The displacement of the particle towards the pressure node or the 

pressure anti-node is determined by the acoustic contrast factor (𝜑): if 𝜑 > 0, the particles will 

gather at pressure nodes; if 𝜑 < 0, the particles will gather at antinodes [15]. It is noted that the 

force on a particle is directly proportional to the cube of particle radius and this indicates that the 

larger particles will experience higher force than the smaller particles. 

2.2 Working Principle  

The SSAW generator consists of a pair of interdigitated transducers (IDTs) fabricated on a 

piezoelectric substrate. A microchannel is set between two IDTs to form a microfluidic device. 

Application of AC signal to the IDT’s causes the SAWs to propagate in the opposite direction 

towards the microchannel. Constructive interference of the two SAWs leads to the formation of 

SSAW field across the channel. The SSAW couples into the fluid medium and produces acoustic 

radiation force on the particles present in the liquid. The change in the trajectory of a particle 

towards PNs or ANs is determined by the compressibility and the density of the particle and the 

surrounding medium. However, most solid particles suspended in aqueous solution, including cells 

move towards the pressure nodes [15]. 
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2.3 Prior Studies 

 

Figure 1. (a) Fabricated IDTs patterned on a lithium niobate wafer; (b) microchannel mold; (c) 

acoustic particle separator [2]. 

The simulation work performed in this study is based on a sheathless size-based acoustic 

particle separation design that was experimentally investigated previously [2]. In the exploratory 

work carried out, four IDTs with a rectangular component design are utilized to generate acoustic 

standing wave fields. The IDT finger width and finger pitch were picked as 75 μm and 300 μm 

respectively. A pair of IDTs of sizes 7.7 mm × 6 mm and 1.7 mm × 6 mm were fabricated on 

lithium niobite substrate in the first stage and second stage respectively as shown in Figure 1. 

The microchannel is fabricated on the substrate such that it is located on the center line 

between the IDTs and the SAW wavelength was chosen to be 300 μm. Figure 2 illustrates the 

design concept of a two-stage SSAW particle separator. For the first stage, the width of the 

microchannel has been designed to be equivalent to half of the wavelength of the SSAW. The 

design promotes the aggregation of the particles at the micro-channel centerline, before they enter 
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the second stage. In order to have the two off-center pressure nodes, the second stage microchannel 

width was taken to be that of one full wavelength. As the particles travel in the second stage of the 

design across the microchannel, acoustic forces are experienced by the particles towards the 

pressure nodes. Depending on the material properties, the unlike particles experience different 

acoustic forces leading them to follow different trajectories. Therefore, variation in material 

properties of these particles results in their subsequent segregation. 

 

 

Figure 2. Conceptual view of SSAW particle separator. 

The solution mixture used for separation involved polystyrene fluorescent particles (β = 

2.46e−10 Pa−1 and ρ = 1.05 g/cm3) with diameter 3 μm and 10 μm and were infused into the 

microchannel by a syringe pump. The acquired highspeed images of the fluorescence in the 

microchannel were used to observe the particle segregation in the acoustic standing wave fields in 

DI-water medium (β = 4.58e−10 Pa−1 and ρ = 1.0 g/cm3). From the experimental measurements, 

it was observed that the fluorescent particles in the DI-water medium were effectively isolated 

with high efficiency and the sheathless SSAW based particle separation has been accomplished. 

The present work is performed to further support the experimental data by using numerical 

simulations. A commercially available finite element modeling software - ANSYS® Fluent - is 
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used to simulate particle velocity distribution, acoustic radiation force and particle patterning 

process. The present study not only considers the separation of same particles of two different 

sizes, but also examines the merits of utilizing alternate designs to optimize the separation 

efficiency. 
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CHAPTER 3: SIMULATION WORK3 

Recent developments in the field of numerical simulation enabled Computational Fluid 

Dynamics (CFD) an effective method to reveal the properties of the fluid flow. They provide fast 

and flexible methods for solving engineering problems at low cost. These numerical simulations 

are based on solving Navier-Stokes flow equations approximately. OpenFOAM®, COMSOL 

Multiphysics® and ANSYS® Fluent are some of the CFD packages that are available for solving 

these equations. Incorporating the simulations in biomedicine has led to the better understanding 

of various phenomena like blood flow in deformable vessels [16], assessing the growth rate of 

tumors [17] etc. As a result, the application of CFD in biomedicine industry have gradually 

increased over the past few years. In this study, the commercial software ANSYS® 18.1 was used 

for designing and simulating the fluid flow in the microchannel. 

3.1 Geometric Model 

 

Figure 3. Microfluidic channel of SSAW particle separator (dimensions in millimeter). 

                                                 
3 Portions of this chapter have been previously published in Ansys® Acadamic Research. Release 

18.1 ed. Permission is included in Appendix C. 
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Based on the concept of a two-stage SSAW particle separator, a geometric model 

illustrated in Figure 3 was established by using ANSYS DesignModeler. The length of the first 

microchannel and second microchannel are 11.81 mm (0.46 in) and 5.67 mm (0.22 in) respectively. 

The model has a single inlet and three outlets. The first channel has a width of 0.15 mm (0.006 in) 

and the second stage microchannel width is taken as 0.3 mm (0.012 in). The depth of the channel 

is 0.1 mm (0.00 4in) and is maintained uniform throughout the flow. 

3.2 Meshing 

Meshing phase is an important stage in performing numerical simulations. Increase in mesh 

quality can reduce discretization error significantly and ensure the best results for a given problem. 

In ANSYS the mesh quality is analyzed through mesh quality metrics which include: 

orthogonality, aspect ratio and skewness. 

 

Figure 4. Orthogonal quality vectors. 

Orthogonal quality for a cell is defined as the minimum value of the equations (3) and (4) 

computed for each face [18]. 
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() Orthogonal quality =  
𝐴𝑖 . 𝑓𝑖 

|𝐴𝑖||𝑓𝑖|
 (3) 

() Orthogonal quality =
𝐴𝑖 . 𝐶𝑖  

|𝐴𝑖||𝐶𝑖|
 (4) 

where 𝐴𝑖 is the face normal vector, 𝑓𝑖is the vector from the centroid of the cell to the centroid to 

that face and 𝐶𝑖is a vector from the centroid of the cell to the centroid of the adjacent cell as 

represented in the Figure 4. The orthogonal quality for a mesh varies on the scale of 0 to 1, with 0 

being the least and 1 being the most effective [18]. 

The second mesh metric, aspect ratio of a cell is defined as the ratio of maximum to 

minimum distance from the centroid of the cell to the nodes and centroids of the face respectively 

[18]. Skewness, the third quality metric, analyses and compares the shape of the cell to the shape 

of an equilateral cell of equivalent volume with respect to its angles or volume [18]. 

In this study, mesh for the simulation model is generated by performing edge sizing along 

the length, width and height of the model. As a result, the generated mesh contains of 125048 

nodes and 98490 elements. ANSYS specifies that an orthogonal quality of 0.95 and skewness less 

than 0.25 are considered excellent [18]. For the model designed, the average orthogonal quality 

and the average skewness of the cells generated are 0.99306 and 4.6509e-002, respectively as 

illustrated in Table 1. The maximum aspect ratio of the mesh is 7.5323 which is within the 

acceptable limits, as the ANSYS guide specifies that the quadrilateral/hexahedral/wedge cells 

inside the boundary layer can have the aspect ratio of up to 10:1 in most cases. With regard to the 

stability of the flow solution, aspect ratio can go as high as possible. However, the maximum 

aspect ratio should be kept below 35:1 [18]. 
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Table 1. Mesh metrics for the designed model. 

Mesh metric Obtained Ideal range 

Orthogonal quality 0.99306 0.95 - 1 

Aspect ratio 7.5323 < 10 

Skewness 4.6509e-02 >0 – 0.25 

 

3.3 Setup  

An Ansys fluent model was developed based upon the boundary conditions as observed 

from the experimental setup of the sheathless size based acoustic particle separation [2]. For all 

the cases analyzed, A laminar viscous model with fluid as DI-water medium (ρ = 1.0 g/cm3) and 

particles as polyester fluorescent particles (ρ = 1.05 g/cm3) were used for performing the 

separation. The boundary conditions have been derived from the experimental setup. An 

experimental average inlet mass flow rate of 8.33e-09 kg/s was taken as inlet boundary condition 

while the outlet gauge pressure has been taken to be 0 KPa. Reynold’s number at the inlet has been 

calculated using the equation (5) and it has been found to be equal to 0.075. The hydraulic diameter 

for the inlet was 1.2e-04. 

 
𝑅𝑒 =

ρu𝐷ℎ

µ
 

(5) 

where Dh is the hydraulic diameter, u is the velocity, ρ is the density and µ is the dynamic viscosity 

of the fluid.  

In discrete phase modelling, surface type injection was selected at the inlet for introducing 

the particles into the fluid and face normal direction was used as the boundary condition. The body 
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force experienced by the particles due to the acoustic radiation force, during their flow has been 

applied through a user defined function in discrete phase modeling [Ref. A.1]. The simulation is 

then carried out for particles of different diameters by varying different parameters. 

After the simulation, a step by step report of each injection was extracted from particle 

tracks with reporting variables as Particle Residence Time, Particle I.D, Particle Y Position, 

Particle X position and Particle Time step in order [Ref. B]. The data obtained from the track 

history is then used as an input to a developed code to calculate the number of particles obtained 

at each outlet [Ref. B]. The separation efficiency for the simulation is then calculated depending 

upon the number of particles at their respective outlets. To quantitatively evaluate the accuracy of 

the simulation, the time taken by the particles to reach to the pressure nodes in the first stage was 

compared and verified with the theoretical data. 

3.4 Verification  

When a particle in the SSAW field maintains a constant velocity, the time needed for its 

migration towards the respective pressure node which is at a distance δx in the range of (0, λ/4) is 

given by the expression [12]. 

 
𝑡 = (

3𝜆2𝜂𝑟𝑐

𝜋
) [𝑙𝑛 𝑡𝑎𝑛 (

2𝜋𝑥

𝜆
)]𝑥1

𝑥2 [𝑝𝑜
2𝑉𝑐𝛽𝑤∅(⁄ 𝜌, 𝛽)] 

 

(6) 

where λ, ∅, η, βw correspond to wavelength, viscosity, acoustic contrast factor, viscosity, 

compressibility of the medium respectively and po, rc, Vc correspond to pressure amplitude, particle 

radius and particle volume respectively. 

For verification purposes, 16 particles having particle id’s 0 to 15 were chosen from Fluent. 

These 16 particles were found to be randomly oriented around the center of the channel. Then the 

time taken for the particles to reach the pressure node in the first stage is estimated from the Fluent 

track history file. The results from the simulation is then compared with the theoretical data 
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obtained from the Equation (6). Figure 5 illustrates the deviation of simulated results from the 

theoretical data. 

 

Figure 5. Time taken for particles to reach pressure node. 

One can observe from Figure 5 that the error in simulated results is less than 4 % when 

compared with the theoretical values. As the accuracy of simulation is established, simulation work 

is then carried out for various parametric conditions. 
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CHAPTER 4: RESULTS AND DISCUSSION 

This section will present the results obtained from the simulation for various parameters 

and will discuss the ways to optimize separation efficiency.  

During the simulations, 60 particles of each type are released simultaneously at the inlet 

and the distribution of particles was captured at location (I), (II) and at three different outlets 

represented as A, B and C as illustrated in Figure 6. The separation efficiency of 3 μm particles 

was defined as B/ (A+B+C) and (A+C)/ (A+B+C) for the larger particles, where A, B and C are 

the number of particles obtained at the outlets A, B and C respectively. 

 

Figure 6. The chosen location (I, II) and outlets (A-C) in the microchannel for capturing the 

distribution of particles. 

4.1 Separation of 10 μm and 3 μm Particles 

During separation process, input wave length was taken as 300 μm and a constant pressure 

amplitude (I) of 100 kPa was applied in the first stage. An inlet mass flow rate was taken to be 

8.33e-09 kg/s as discussed in section 3. Then the separation efficiency was calculated by varying 

the pressure amplitude (II) from 30 kPa to 120 kPa in the second stage. Figure 7 illustrates the var-



www.manaraa.com

17 

 

-iation of separation efficiency results obtained as a function of pressure amplitude in the second 

stage. 

 

Figure 7. Variation of separation efficiency with second stage pressure amplitude. 

In the second stage, acoustic radiation force (ARF) on the particles increases with the 

increase in pressure amplitude as it is observed from Eq. 1 that ARF is directly proportional to the 

square of pressure amplitude (𝑝𝑜). Due to this, as the pressure amplitude increases, number of 10 

µm particles at their respective outlets increases but it also causes the 3 µm particles to deviate 

from its path resulting in a decrease in separation efficiency. This behavior of particles is illustrated 

in Figure 7 when the pressure amplitude (II) is increased from 30 kPa to 80 kPa. Also, as the 

pressure amplitude (II) increases to 80 kPa the variations in the separation efficiency of 10 µm 

particles is found to greater than that of 3 µm particles. This is because, 10 µm particles experiences 

an acoustic radiation force (ARF) 37 times than that of 3 µm particles due to their relatively large 

volume which in turn causes larger variations in separation efficiency. 
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From Figure 7, it is observed that at an optimal pressure amplitude of 80 kPa, both the 

particles 10 μm and 3 μm have a separation efficiency of 100 % and 86.67 % respectively. The 

efficiency of 3 μm particles obtained can be further improved by increasing their concentration at 

the center of the channel. This can be attained by raising the pressure amplitude (I) in the first 

stage. The separation efficiency of particles obtained by varying the pressure amplitude (I) in the 

first stage is illustrated in Figure 8. For this set of simulations, a constant pressure amplitude (II) 

of 80 kPa was applied in the second stage and the first stage pressure amplitude was varied from 

30 kPa to 130 kPa. 

 

Figure 8. Variation of separation efficiency with first stage pressure amplitude. 

One can observe from Figure 8 that as the pressure amplitude increases, the separation 

efficiency of 3 μm particles increases while the efficiency remains constant at 100 % for 10 μm 

particles. This is because, even though the Pressure amplitude (I) is varied from 30 to 130 kPa, 

second stage pressure amplitude (II) is high enough to separate them effectively. At 110 kPa, both 

the particles 10 μm and 3 μm have a separation efficiency of 100 % and 96.67 % respectively. 
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Hence by maintaining a pressure amplitude greater than 110 kPa in the first stage and 80 kPa in 

the second stage, a separation efficiency greater than 96 % can be obtained for both the particles. 

4.2 Critical Particle Size for Acoustic Particle Separation with 3 µm Particles 

A procedure similar to the one described in the section 4.1 is used for determining the 

critical particle size for acoustic particle separation. During the first set of simulations, input 

wavelength was taken as 300 μm and a constant pressure amplitude (I) of 100 kPa was applied in 

the first stage. An inlet mass flow rate of 8.33e-09 kg/s was taken as inlet boundary condition. The 

separation efficiency was then calculated for diameter of particles varying from 5 μm to 10 μm at 

different second stage pressure amplitudes (II). Figure 9 illustrates the variation of separation 

efficiency with second stage pressure amplitude for particle of different sizes. 

 

Figure 9. Variation of separation efficiency with second stage pressure amplitude. 

From Figure 9, it is observed that both 3 μm and 7 μm particles can be separated effectively 

with a separation efficiency greater than 80 % at 90 kPa. However, there is no optimum pressure 

amplitude at which 3 μm and 6 μm or 3 μm and 5 μm are separated effectively.  



www.manaraa.com

20 

 

The separation efficiency obtained for 3 μm particles can be further improved by increasing 

the pressure amplitude (I) in the first stage. Figure 10 shows the variation of separation efficiency 

with second stage pressure amplitude (II) while the pressure amplitude (I) in the first stage was 

maintained at 120 kPa. 

 
Figure 10. Variation of separation efficiency with pressure amplitude (II). 

From Figure 10, it can be observed that both 3 μm and 6 μm particles have a separation 

efficiency greater than 80 % at 110 kPa pressure amplitude. However, the variation between the 

separation efficiency of 3 μm and 5 μm particles increased with the increase in first stage pressure 

amplitude. Hence, by maintaining a pressure amplitude greater than 120 kPa in the first stage and 

110 kPa in the second stage the critical size of the particle that can be separated with 3 μm particles 

is 6 μm. 

4.3 Effect of Flow Rate on Separation Efficiency  

During the first set of simulations, the wavelength, pressure amplitude in the first and 

second stage were set to 300 μm, 120 kPa and 110 kPa respectively. Particles of 3 μm and 6 μm 
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diameter were selected for the simulation as it was observed from section 4.2 that 6 μm is the 

critical size that can be separated with 3 μm. The separation efficiency for the particles was then 

calculated for flow rates varying from 8.33e-09 kg/s to 8.33e-08kg/s. The variation in the 

separation efficiency as a function of flowrate is illustrated in Figure 11. 

 

Figure 11. Separation efficiency as a function of flow rate. 

From Figure 11, it is observed that as the flow rate is doubled the separation efficiency of 

6 μm particles decreases from 86.67 % to 13.33 %, while it decreases from 93.33 % to 66.67 % 

for 3 μm particles. The variation in separation efficiency for 6 μm particles is greater than that of 

3 μm particles. This is because, as the flow rate is doubled, 6 μm particles spend less time in the 

second stage thereby reducing the separation from 3 μm particles. However, for 3 μm particles, 

spending less time in second stage would decrease the deviation from their respective outlet 

resulting in higher separation efficiency than 6 μm particles. This behavior of particles is illustrated 

in Figure 12 (a) and 12(b) which were captured at position (II) represented in Figure 6. 
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Figure 12a. Particle tracks of 3 µm (green) and 6 µm (red) particles at 8.33e-09 kg/s flowrate. 

 

Figure 12b. Particle tracks of 3 µm (green) and 6 µm (red) particles at 1.67e-08 kg/s flowrate. 

As the flow rate is increased from 1.67e-08 kg/s to 8.33e-08 kg/s the separation efficiency 

for 3 μm particles gradually decreases. This is expected as the concentration of 3 μm particles at 

the center of the channel decreases with the increase in flow rate. As a result, the number of 3 μm 
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particles decreases at its respective outlet. This behavior in the separation efficiency of 3 μm 

particles can be observed from Figure 13 (a) and (b). 

 
Figure 13a. Particle tracks of 3 µm (green) particles at 1.67e-08 kg/s flowrate.   

 

Figure 13b. Particle tracks of 3 µm (green) particles at 8.33e-08 kg/s flowrate. 
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Figure 14a. Particle tracks of 6 µm (red) particles at 3.33e-08 kg/s flowrate. 

 

Figure 14b. Particle tracks of 6 µm (red) particles at 8.33e-08 kg/s flowrate 

As illustrated in Figure 11, For 6 μm particles, as the flowrate increases from 3.33e-08 kg/s 

to 8.33e-08 kg/s, the concentration of particles at the center of the channel decreases. This results 

in an easier sorting of particles in the second stage which can be observed in Figure 14(a) and 

14(b). Due to this separation efficiency of 6 μm particles increases and as 6 μm is the critical size 
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of the particles that can be separated with 3 μm, the separation efficiency for particles of larger 

diameter will be higher than that of 6 μm particles represented in Figure 11. 

4.4 Effect of Interdigital Transducer (IDT) Length on Separation Efficiency  

One of the most important parameters that decides the performance of the device is the 

length of IDTs. The optimum length of the IDTs required for efficient separation of particles is 

found by performing simulations for various IDTs lengths. During the simulation, the wavelength, 

the pressure amplitude in the first and second stages were set to 300 μm, 120 kPa and 110 kPa 

respectively. Particles of 3 μm and 6 μm were selected for the simulation and a flowrate of 8.33e-

09 kg/s was taken as the inlet condition. As the design concept is of a two-stage SSAW particle 

separator, the separation efficiency is found by varying the length of one stage at a time while 

keeping the other constant.  

In the first set of simulations, the length of second stage IDTs is maintained constant at 1.7 

mm while for the first stage it is varied from 5.7 mm to 9.7 mm. The obtained separation efficiency 

results as a function of IDTs length is illustrated in Figure 15. 

 

Figure 15. Separation efficiency as a function of first stage IDTs length. 

From Figure 15 it is observed that the separation efficiency of 3 μm particles gradually 

increases with the increase in IDTs length and reaches 100 % at 8.7 mm. This behavior is expected 
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as the concentration of 3 μm particles increases at the center of the channel with the increase in 

length of first stage IDTs. This results in an increased separation efficiency as the deviation of 3 

μm particles from its respective outlet decreases.  

As observed from the Figure 15, the separation efficiency of 6 µm particles remains more 

or less the same with the change in first stage IDTs length. The reason for this is, IDTs of length 

5.7 mm is sufficient enough for 6 µm particles to move to the center of the channel. This behavior 

of particles is illustrated in the Figure 16 (a) and (b) which was captured at position I represented 

in Figure 6. 

 

Figure 16a. Particle tracks of 6 µm (red) particles at 5.7 mm first stage IDTs length.  

.  
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Figure 16b. Particle tracks of 6 µm (red) particles 9.7 mm first stage IDTs length.  

During the second set of simulations, IDTs length in the first stage was set to 7.7 mm and 

the length in the second stage was varied from 0.85 mm to 3.4 mm. Figure 17 illustrates the 

obtained separation efficiency results as a function of IDTs length. 

 

Figure 17. Separation efficiency as a function of second stage IDTs length. 

From Figure 17, The optimum length of second stage IDTs was found to be 1.7 mm where 

both 3 µm and 6 µm particles have an efficiency of 93.33 % and 86.67 % respectively. For IDT’s 

of length less than the ideal parameter, both the particles spend less time in the second stage. Due 
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to this the separation of 6 µm particles form 3 µm decreases. For IDT’s of length more than the 

Ideal value, both the particles experiences ARF for a relatively longer period. As a result, the 

deviation of 3 µm particles from its respective outlet increases causing a decrease in separation 

efficiency. These two phenomena of the particles can be observed in Figure 17, where there was 

no significant separation of particles for IDTs of length less than 1.5 mm or greater than 2.5 mm. 

Hence by maintaining second stage IDTs length of 1.7 mm and first stage IDTs length greater than 

8.7 mm one could obtain high separation of particles. 

4.5 Effect of Transducer Wavelength on Separation Efficiency 

For determining the effect of transducer wavelength on separation efficiency, numerous 

simulations have been carried out by taking the pressure amplitudes in the first and second stage 

to be 120 kPa and 110 kPa respectively. The simulations were performed for 3 μm and 6 μm 

particles for a constant flowrate of 8.33e-09 kg/s. The separation efficiency is then calculated by 

varying the wavelength at one stage while keeping the other constant.  

 

Figure 18. Separation efficiency as a function of first stage wavelength. 
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In the first set of simulations, the wavelength in the first stage was varied from 300 μm to 

400 μm while for the second stage it was maintained constant at 300 μm. The obtained separation 

efficiency as a function of wavelength (I) in the first stage is illustrated in Figure 18. 

From Eq. 1, ARF on a particle is inversely proportional to the wavelength generated by the 

IDT’s. Hence the magnitude of ARF on the particles decreases with the increase in wavelength. 

Due to this, the separation efficiency of 3 µm particles reduces by 64.3 % as the wavelength 

increases from 300 µm to 400 µm as illustrated in Figure 18. This variation in ARF experienced 

by 3 µm particles in the first stage as a function of particle position (y) for different wavelengths 

is illustrated in Figure 19. For 6 µm particles, as the wavelength increases, the variations observed 

in the separation efficiency is less than that of 3 µm particles. The reason for this is, a wavelength 

of 300 μm in the second stage is high enough to separate the particles effectively. 

 

Figure 19. Variation in ARF with particle position (y) for different wavelengths. 

During the second set of simulations, the wavelength in the first stage was maintained 

constant at 300 μm while for the second stage it varied from 300 μm to 400 μm. The obtained 
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separation efficiency as a function of wavelength (II) in the second stage is illustrated in Figure 

20. 

 

Figure 20. Separation efficiency as a function of second stage wavelength. 

From Figure 20, it can be observed that the optimal wavelength in the second stage for the 

effective separation of particles is 300 μm. Hence by maintaining a wavelength of 300 μm in both 

the stages, effective separation of particles can be achieved. 

4.6 Effect of Separator Offset on Efficiency  

Fabrication of acoustic particle separator has always been a difficult task as the geometric 

variations cause a significant change in the performance of the separator. One of the basic 

objectives during the fabrication process is to minimize the alignment errors between the 

microchannel and the IDT’s. In this section we analyze the effect of alignment error on separation 

efficiency by performing simulations for various offsets. Figure 21 illustrates the offset error 

caused by misalignment of the microchannel. As the design of the microchannel is symmetrical 

about its axis, we analyze the separation efficiency by varying the offset (Δy) in the negative 
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direction of y axis only. The separation efficiency results obtained from the simulations is 

illustrated in Figure 22 as a function of offset (Δy). 

 

Figure 21. Offset (Δy) due to misalignment between microchannel and IDT’s. 

 

Figure 22. Separation efficiency as a function of offset (Δy). 

As illustrated in Figure 22, for 6 μm particles, as the offset (Δy) increases from 1 μm to 3 

μm, the separation efficiency of particles decreases and increases. This is because of transition of 

6 μm particles to the closest pressure node. This behavior of particles can be observed in Figure 

23 (a) and 23 (b). 
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Figure 23a. Tracks of 6 μm particles (red) at 1 μm offset. 

 

Figure 23b. Tracks of 6 μm particles (μm) at 3 μm offset. 

The separation efficiency of 3 μm particles decreases beyond the offset of 3 μm as 

illustrated in Figure 22. From the simulation results and by considering the performance of the 
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separator, it should be taken care that the offset error will not exceed 5 μm during fabrication 

process. 
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CHAPTER 5: CONCLUSION AND FUTURE WORK 

This section presents the conclusions drawn from the simulation work and will also gives 

an idea on how to calibrate acoustic particle separator. The findings in the present work will help 

in designing SSAW driven microfluidic devices and in increasing the efficiency of particle 

separation. 

5.1 Summary  

A simulation model which demonstrates the particle separation by acoustic radiation force 

have been developed using ANSYS® Fluent. Through theoretical and simulation data, the 

accuracy of the simulations has been analyzed and it is found to have an error less than 4 %. As 

the pressure amplitude in the first and second stage is increased to 80 kPa and 110 kPa respectively, 

the optimization study performed have found to enhance the separation efficiency over 96 % for 

both 10 and 3 μm particles. Also, the critical size polystyrene of particles that can be separated 

with 3 μm was found to be 6 μm. The parameters for which optimum separation efficiency can be 

obtained for 3 μm and 6 μm particles is listed in Table 2. 

Table 2. Ideal parameter values for 3 μm and 6 μm particles separation. 

S.No. Parameter Ideal value 

1 First stage pressure amplitude 120 kPa 

2 Second stage pressure amplitude 110 kPa 

3 Flow rate < 8.33e-09 kg/s 
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Table 2. (Continued) 

4 First stage IDT’s length     > 8.7 mm 

5 Second stage IDT’s length 1.7 mm 

6 Wavelength 300 µm 

7 Offset < 5 µm 

  

As 6 μm is the critical size of the particles that can be separated with 3 μm, the separation 

efficiency for particles of larger diameter will be higher than that of 6 μm particles that is obtained 

by utilizing the parameters listed in Table 2.  

5.2 Future Work  

The simulation model developed in this study considers the application of acoustic 

radiation force on the particles without other factors like particle collisions and the effect of 

temperature. Improvements to the current model can be made by considering these factors into 

account which would eliminate any further errors present. While every effort was made to design 

a simulation model with high levels of accuracy, the results obtained can be further refined by 

verifying it experimentally.  

In the simulation study performed, future work will include multichannel (three+) cell 

sorting and also seek to extend separation process for particles other than polystyrene fluorescent 

particles. This work could be performed by changing the properties of the particle in ANSYS® 

FLUENT. Implementing the results derived from such work in designing the particle separator 

will allow the designer to accurately predict and improve the performance of the device. 
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APPENDIX A: USER DEFINED FUNCTION 

A.1 Acoustic Radiation Force  

This appendix discusses the development of user defined function (UDF) for the application of 

acoustic radiation force experienced by the particles in fluid flow. A sample UDF code developed for the 

separation particles is illustrated below. 

 

#include "udf.h" 

#include "dpm.h" 

#define PAMP 100000   // pressure amplitude in first stage 

#define PAMPS 30000   // pressure amplitude in second stage 

#define WAVEL 300e-06   // wavelength 

#define PCOMP 2.46e-10  // particle compressibility 

#define MCOMP 4.58e-10  // medium compressibility 

#define MDEN 1000.0   // medium density 

#define PDEN 1050.0   // particle density 

#define WNO 20943.95102 // wave number 

 

DEFINE_DPM_BODY_FORCE(particle_body_force,p,i) 

{ real bforce;    // acoustic radiation force 

real phy;    // acoustic contrast factor 

real uf;     // acoustic radiation force in upward direction 

real df;     // acoustic radiation force in downward direction 

 

phy=((5*PDEN-2*MDEN)/(2*PDEN+MDEN))-(PCOMP/MCOMP); 

 

uf=-

(3.141*pow(PAMPS,2)*(3.141*pow(P_DIAM(p),3)/6)*MCOMP/(2*WAVEL))*sin(2*WNO*(P_POS(p

)[1]-0.075e-03))*phy; 

 

df=-

(3.141*pow(PAMPS,2)*(3.141*pow(P_DIAM(p),3)/6)*MCOMP/(2*WAVEL))*sin(2*WNO*(0.075e-

03+P_POS(p)[1]))*phy; 

 

if(P_POS(p)[0]>=0.0038 && P_POS(p)[0]<=0.0115) // x position of particles in first stage w.r.t inlet 

(origin) 

 

{ if(i==1) 
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{bforce=-

(3.141*pow(PAMP,2)*(3.141*pow(P_DIAM(p),3)/6)*MCOMP/(2*WAVEL))*sin(2*WNO*(P_POS(p)[

1]))*phy;} 

else 

{bforce=0.0;} 

} 

else if(P_POS(p)[0]>=0.013 && P_POS(p)[0]<=0.0147) // x position of particles in second stage w.r.t inlet  

{ if(P_POS(p)[1]>0) 

{ 

if(i==1) 

{bforce=uf;} 

else 

{bforce=0.0;} 

} 

else if(P_POS(p)[1]<0) 

 {if(i==1) 

{bforce=df;} 

else 

{bforce=0.0;} 

} 

else 

{bforce=0.0;} 

} 

else 

{bforce=0.0;} 

return (bforce/P_MASS(p)); 

} 
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APPENDIX B: SEPARATION EFFICIENCY 

This section discusses a simple C++ code which is used to calculate the number of particles 

obtained at each outlet by utilizing the data obtained from the track history file. A sample part of 

a track history file is illustrated below. 

FILE TYPE: 1 

COLUMNS: 5 

TITLE: TRACK HISTORY 

COLUMN TYPE VARIABLE (UNITS) 

------ ---- -------- ------- 

1 2 ParticleResidenceTime (s) 

2 10 ParticleID - 

3 10 ParticleYPosition (m) 

4 10 ParticleXPosition (m) 

5 10 ParticleTimeStep (s) 

--------------------------------------------- 

0.00E+00   0.00E+00   5.25E-05  1.97E-10  0.00E+00 

1.93E-04  0.00E+00  5.25E-05   4.55E-08  1.93E-04 

9.16E-03  0.00E+00  5.18E-05  4.29E-06  8.97E-03 

1.80E-02  0.00E+00  5.10E-05  8.58E-06  8.87E-03 

2.66E-02  0.00E+00  5.01E-05  1.29E-05  8.57E-03 

3.49E-02  0.00E+00  4.92E-05  1.71E-05  8.27E-03 

4.29E-02  0.00E+00  4.82E-05  2.14E-05  7.98E-03 

5.06E-02  0.00E+00  4.72E-05  2.56E-05  7.70E-03 

5.80E-02  0.00E+00  4.60E-05  2.98E-05  7.43E-03 

6.43E-02  0.00E+00  4.50E-05  3.35E-05  6.25E-03 

7.12E-02  0.00E+00  4.38E-05  3.79E-05  6.92E-03 

7.33E-02  0.00E+00  4.34E-05  3.94E-05  2.17E-03 

7.93E-02  0.00E+00  4.26E-05  4.38E-05  6.00E-03 

8.47E-02  0.00E+00  4.21E-05  4.81E-05  5.35E-03 

8.99E-02  0.00E+00  4.17E-05   5.24E-05  5.21E-03 

9.50E-02   0.00E+00  4.14E-05  5.68E-05  5.10E-03 

1.00E-01  0.00E+00  4.11E-05  6.11E-05  5.00E-03 

1.05E-01  0.00E+00  4.08E-05  6.54E-05  4.90E-03 

1.10E-01  0.00E+00  4.06E-05  6.97E-05  4.81E-03 

1.14E-01  0.00E+00  4.05E-05  7.40E-05  4.73E-03 

1.19E-01  0.00E+00  4.03E-05  7.83E-05  4.65E-03 

1.19E-01  0.00E+00  4.03E-05  7.87E-05  3.87E-04 

1.24E-01  0.00E+00  4.03E-05  8.27E-05  4.50E-03 
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C++ program developed to calculate particles at each outlet is illustrated below and is based 

on the dimensions of the SSAW particle separator illustrated in Figure 5. 

 

#include<iostream> 

#include<fstream> 

using namespace std; 

int main() 

{ 

int i=0; 

int j=-1; 

int outlet1=0; 

int outlet2=0; 

int outlet3=0; 

string line; 

double a,b,c,d,e; 

int n; 

 

fstream myfile; 

myfile.open("output.txt"); 

if(myfile.is_open()) 

{ 

cout<<"\nreading no of lines"<<endl; 

while(!myfile.eof()) 

{ 

getline(myfile,line); 

j++; 

} 

n=j; 

cout<<"no of lines:"<<n<<"\n\n\n"<<endl; 

} 

myfile.close(); 

 

double* RT=NULL; 

double* ID=NULL; 

double* Y=NULL; 

double* X=NULL; 

double* TS=NULL; 
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RT=new double[n]; 

ID=new double[n]; 

Y=new double[n]; 

X=new double[n]; 

TS=new double[n]; 

 

myfile.open("output.txt"); 

ofstream outfile; 

outfile.open("results.txt"); 

if(myfile.is_open() && outfile.is_open()) 

{ 

cout<<"reading values"<<endl; 

while(myfile>> a >> b >> c >> d >> e) 

{ 

RT[i]=a; 

ID[i]=b; 

Y[i]=c; 

X[i]=d; 

TS[i]=e; 

i++; 

} 
} 

myfile.close(); 

 

cout<<"reading particle position at outlet"<<endl; 

for(i=0;i<n;i++) 

{ 

if(ID[i]!=ID[i+1]) 

{ 

if(Y[i]<0.09e-03 && Y[i]>-0.09e-03) 

{ 

outlet1++; 

} 
 

if(Y[i]>0.09e-03) 

{ 

outlet2++; 

} 
 

if(Y[i]<-0.09e-03) 

{ 

outlet3++; 
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} 
} 

} 
 

cout<<"no of particle at outlet1:"<<outlet1<<endl; 

cout<<"no of particles at outlet2:"<<outlet2<<endl; 

cout<<"no of particles at outlet3:"<<outlet3<<endl; 

cout<<"\n\nwriting results to file "<<endl; 

outfile<<"outlet1:"<<outlet1<<"\t"<<"outlet2:"<<outlet2<<"\t"<<"outlet3:"<<outlet3<<endl; 

cout<<"\n\ndone"<<endl; 

return 0; 

} 

 

To obtain the number of particles at each outlet, the data obtained from the track history 

file is to be copied to the output.txt and upon running the code the results would be written to 

results.txt. 
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APPENDIX C: COPYRIGHT PERMISSIONS 

The permission below is for the use of material in Chapter 2. 
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The permission below is for the use of material in Chapter 3. 
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The permission below is for reproducing this thesis as the full published article in the 

Microsystem Technologies. 
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